Somatic mutation detection from liquid biopsy-derived cellular aggregates formed by magnetic 3D bioprinting

Hubert Tseng^{1,2}, Mehdi Dehghani^{2,3}, Cristian Ionescu-Zanetti⁴, Jacob A. Gage¹, Pujan K. Desai¹, Angela Liao¹, Reynolds Brobey², Jeff Jensen⁴, Kevin P. Rosenblatt^{2,3}, Glauco R. Souza^{1,2}, Robert J. Amato² ¹Nano3D Biosciences, Houston, TX; ²Department of Internal Medicine, Division of Oncology, University of Texas Health Science Center at Houston, Houston, TX; ³CompanionDx, Houston, TX; ⁴Fluxion Biosciences, South San Francisco, CA

Background

There is increasing interest in the analysis of circulating tumor cells (CTC) from liquid biopsies to track dynamic changes in mutational profile. One of the major challenges to CTC analysis is the inability to culture them, largely due to their scarcity preventing their survival in culture. CTC culture would allow for their expansion, analysis, and the potential development of companion in vitro diagnostics and novel therapies.

Towards that end, we use a novel technique, magnetic 3D bioprinting, to culture CTCs into spheroids. The principle behind magnetic 3D bioprinting is the magnetization of cells and their aggregation into spheroids using magnetic forces.^{1,2} We can use this method to actively magnetize CTCs, then aggregate them into close contact for their survival, expansion, and analysis. Magnetization is accomplished via incubation with NanoShuttleTM, a biocompatible nanoparticle assembly that is non-specific, and does not interfere with fluorescence or require specialized equipment.

In this study, we demonstrated the ability to aggregate CTCs using magnetic 3D bioprinting, then perform next generation sequencing (NGS) to detect somatic mutations from renal and prostate cancers.

Magnetic 3D bioprinting is the ideal method to culture CTCs for expansion and analysis

Methods

- Liquid biopsies were drawn from prostate and kidney cancer patients according to IRB-approved protocols
- Blood was first enriched immunomagnetically for EpCAM+/ EGFR+ cells (Isoflux, Fluxion Biosciences), then enumerated for CK+/CD45- cells
- Microbeads were removed enzymatically off CTCs
- CTCs were concentrated (800 g for 5 min), resuspended (1 x 10⁶ cells/mL), and incubated with NanoShuttleTM (1 μ L/1 x 10⁴ cells, Nano3D Biosciences) for 2 h with constant agitation to magnetize
- Magnetized CTCs were distributed into cell-repellent 384-well plates (Greiner Bio-One), then aggregated into spheroids with a 384-well magnetic spheroid drive (Nano3D Biosciences)
- CTCs were cultured in RPMI-1640 + CTL supplement + 10% fetal bovine serum
- Viability was measured through culture using RealTime-Glo (Promega)
- After 4 d, the cells were lysed and DNA was amplified by whole genome amplification with the NGS kit (Fluxion) and quantified via qPCR
- Targeted libraries were sequenced (PGM, ThermoFisher)
- Data was analyzed using a customized variant calling/ filtering pipleine based on standard Ion Reporter alignment tools and VarSeq[™] for variant filtering and functional interpretation

Enumeration

CTCs were successfully enriched from drawn blood for EpCAM+/EGFR+ cells and CK+/CD45cells were enumerated

biopsies via microfluidics

Sample	# CTCs	% CTCs	Notes		
Prostate					
001	466	27.1%	Advanced, metastatic, CRPC		
002	452	24.6%	Advanced, metastatic, CRPC		
003	456	33.7%	Advanced, metastatic, CRPC		
004	722	24.3%	Advanced, metastatic, CRPC		
005	139	2.7%	Minimal, metastatic, CRPC		
006	170	4.3%	Minimal, metastatic, CRPC		
007	227	1.9%	Hormone sensitive, metastatic, locoregional		
			recurrence		
800	10	0.01%	Minimal, metastatic, CRPC		
009	130	13.6%	Advanced, metastatic, CRPC		
010	199	14.1%	Advanced, metastatic, CRPC		
Renal					
003	143	1.7%	Advanced, metastatic		
004	65	5.0%	Advanced, metastatic		
005	349	24.1%	Advanced, metastatic		
006	661	37.2%	Advanced, metastatic		
007	170	8.4%	Minimal, metastatic		
008	143	2.7%	Advanced, metastatic		
009	765	28.0%	Advanced, metastatic		
010	1413	29.8%	Advanced, metastatic		

Enumeration of CTCs from enriched blood (IsoFlux, Fluxion Biosciences) drawn from liquid biopsies from patients with both renal and prostate cancer, and their disease states at the time of collection.

Magnetic 3D Bioprinting

CTCs were immunomagnetically isolated Microbeads were enzymatically detached

Clockwise from top left: Schematic of immunomagnetic sorting, bead removal, magnetization, and spheroid culture; viability of spheroids from prostate and renal cancer patients over time, which increased significantly over time (n = 10 patients); 384-well bioprinting kit used for culture.

Biosciences, Inc.

IsoFlux system to immunomagnetically isolate CTCs from liquid

Magnetize CTCs by incubating with NanoShuttle for 2 h with constant agitation NanoShuttle Distribute magnetized CTCs into cell-repellent 384-well plate Magnetized CTC Place place on magnetic drive to print CTCs into spheroids

Remove plate off magnet and culture

NGS

Chr:Pos		Ref/Alt	Alt Allele	Gene	Gene	Effoot
			Frequency	Name	Region	
13:329	06729	A/C	77.86%	BRCA2	exon	Missense
9:2196	8199	C/G	73.70%	CDKN2A	UTR3	Other
3:5243	36441	C/A	67.99%	BAP1	intron	Other
17:295	08775	G/A	30.63%	NF1	exon	Other
9:2197	70916	C/T	20.67%	CDKN2A	exon	Missense
11:324	56694	C/A	12.49%	WT1	exon	Other
16:688	55984	C/T	3.32%	CDH1	exon	LoF
5:1121	75771	G/A	1.79%	APC	exon	Missense

An example of somatic variants found in magnetically 3D bioprinted spheroids of CTCs, isolated from a liquid biopsy from prostate patient 004. These variants were detected using the Oncomine panel (ThermoFisher) and are all found in the COSMIC database

Number of somatic variants found for each sample, and the number of those variants found in COSMIC

Future Directions

- microbead removal
- immunohistochemistry and NGS
- Develop protocol to print CTC spheroids with speed and reproducibility for precision medicine

Acknowledgements

Thank you to Fluxion Biosciences for CTC enrichment and enumeration, and CompanionDx for NGS and analysis.

References

1. Souza GR et al. Nat. Nanotech. (2010) 2. Tseng H et al. Sci. Rep. (2015)

mple	Variants	In COSMIC					
ate							
201	8	0					
002	17	1					
)04	40	8					
007	27	7					
203	80	12					
005	9	2					
006	32	5					
007	37	5					
010	88	11					

• Optimize CTC isolation from blood, particularly enzymatic

Improve CTC growth and expansion in culture

• Explore phenotype of expanded CTCs with