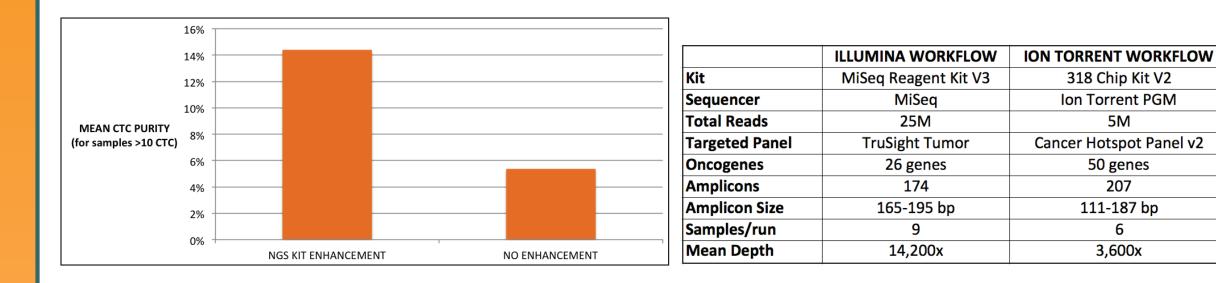
Mutational analysis from circulating tumor cells using next-generation sequencing

Michael Schwartz¹, Andrea Fan¹, Tony Tran¹, Christine Fu¹, Cristian Ionescu-Zanetti¹ (¹Fluxion Biosciences) Pamela Paris², Terence Friedlander², Gayatri Premasekharan², Ajjai Alva³, Ling Dong⁴, Xinmin Li⁴ (²UCSF, ³Univ. Michigan, ⁴UCLA)

INTRODUCTION


FLUXION

Tumor mutational analysis provides insight into patient drug response, prognosis, and tumor biology. A key limitation to this process is the availability of tumor tissue that adequately represents the current disease status. This study presents a Next Generation Sequencing (NGS) workflow utilizing enriched circulating tumor cells (CTCs) as an input.

The CTC enrichment is performed using the IsoFlux System that accommodates multiple capture antibody cocktails and has been shown to be effective across multiple indications.

ANALYTICAL VALIDATION OF NGS WORKFLOW

Purity enhancement and NGS panel design

Variant detection in analytical samples

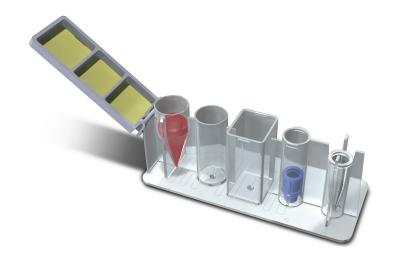
1	SAMPLES			MiSeq using the TruSight Tumor Panel				PGM using the CHPv2 Panel			
	MDA-MB-231 Spike Level (cells/mL)	Recovery Rate	CTC Purity	Variant % BRAF-1417	Variant % KRAS-8281		Other variants	Variant % BRAF-1417	Variant % KRAS-8281	Variant % TP53-7099	Other variants

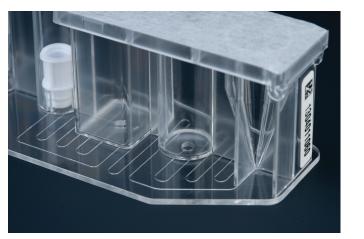
High purity enhancement: Bladder cancer samples (N=15) were processed using the IsoFlux NGS Kit that contains a purityenhancement column. The mean purity in CTC-positive (>10) samples went from 5% to 15%, a level that is compatible with NGS analysis.

NGS design: Workflows were developed for Illumina and IonTorrent, the leading NGS platforms, using comparable tumor panels.

Variant detection: Spiked samples (MDA-MB-231 cell line) were prepared at Fluxion and sent to multiple labs for

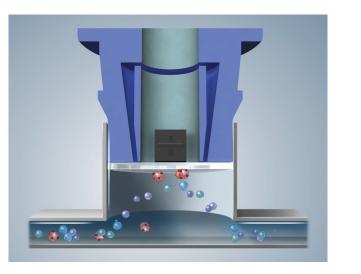
METHODS




Sample Collection

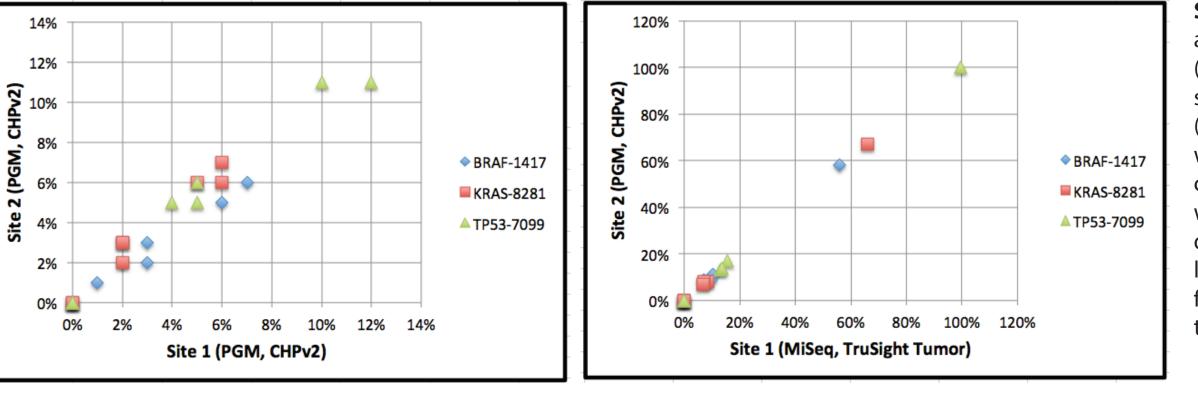
2 x 10cc EDTA blood tubes were collected
Shipped overnight at room temperature.

Bead Coupling


- RBCs removed with FICOLL
- EpCAM and EGFR magnetic beads added
- Sample loaded into microfluidic cartridge

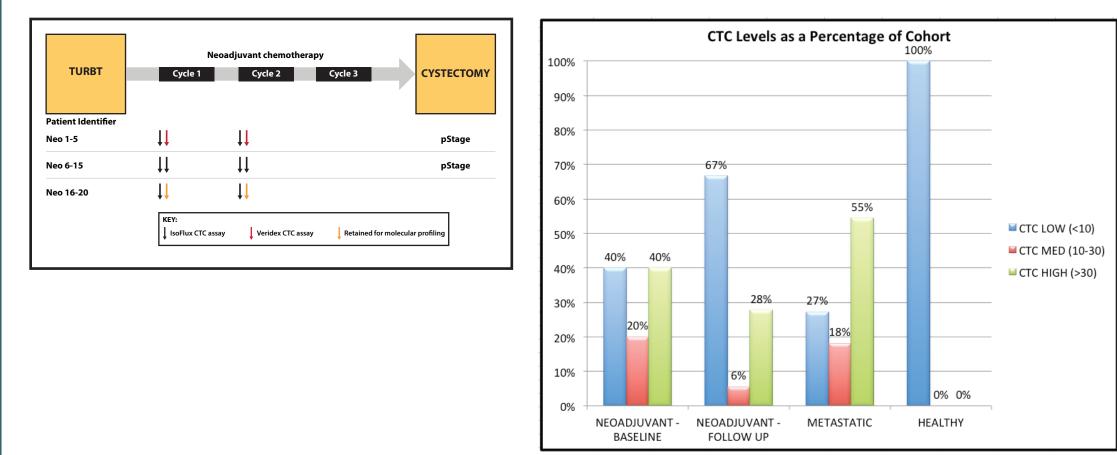
CTC Enrichment

- Cells pass through microfluidic isolation zone
- Target cells with beads captured on roof of channel
- Up to 4 samples/run, 12 samples/day, 4°C controlled



Pure MDA	100%	N/A	56.0%	66.1%	99.5%	ND	58.0%	67.0%	100.0%	TP53 (3%, 31/143)	
15	61%	73%	37.8% 38.9% 66.3% ND				(not tested)				
7	44%	16%	9.6%	8.3%	15.7%	ND	9.0%	8.0%	17.0%	ND	
7	44%	16%	7.0%	7.0%	13.0%	ND	9.0%	8.0%	13.0%	ND	
3	60%	12%	10.3%	6.8%	13.5%	ND	11.0%	7.0%	14.0%	ND	
2	71%	13%	(not tested)				4.0%	4.0%	11.0%	ND	
0	0%	0%	ND	ND	ND	ND	ND	ND	ND	ND	
0	0%	0%	ND	ND	ND	ND	ND	ND	ND	ND	
0	0%	0%	ND	ND	ND	ND	ND	ND	ND	ND	

analysis, using both IonTorrent and Illumina workflows. All of the 3 variants present in the cell line (KRAS, BRAF, TP53) were detected at all concentrations (range: 2-15 cells/mL spiked in).


Comparison across multiple sites and cancer panels

Site and panel comparisons: The same analytical samples were sent to two sites (UCLA, Thermo Fisher Scientific) for sequencing with the lon Torrent workflow (left). Another set of duplicate samples were sent to two sites (UCLA, Moffitt) for comparison of the lonTorrent and Illumina workflows. Both comparisons showed detection of variants expected in the cell line with good alignment of allelic frequencies across all concentrations tested.

NGS ANALYSIS OF BLADDER CANCER SAMPLES

Study design and CTC recovery performance

Study design (left) : Twenty neoadjuvant bladder cancer patients were enrolled at time of transurethral resection of bladder tumor (TURBT). All patients had two tubes of blood drawn prior to the first cycle of neoadjuvant chemotherapy, and two tubes drawn after the first cycle (approximately one month later). One tube was used for enumeration, and the matched tube was used for molecular analysis (NGS).

NGS Analysis

- CTCs transfered in low volume (5µL)
- Purity enhancement with IsoFlux NGS Kit
- Illumina Workflow: enrichment with TruSight Tumor Panel (24 genes), NGS on MiSeq
- IonTorrent Workflow: enrichment with Ampliseq Cancer Hotspot v2 (50 genes), NGS on IonTorrent PGM
- Variant filtering and annotation using VarSeq

NGS analysis of bladder samples

PATIENT IDENTIFIER	CANCER STAGE	CTC COUNT	CTC PURITY	SOMATIC VARIANTS DETECTED
Healthy	Healthy	0	0%	N/D
Healthy	Healthy	0	0%	N/D
Healthy	Healthy	0	0%	N/D
Healthy	Healthy	0	0%	N/D
N17 - 1mo follow up	Neoadjuvant	40	10%	FGFR2
N18 - 1mo follow up	Neoadjuvant	100	19%	PDGFRA
N22*	Neoadjuvant	20	12%	N/D
N22 - 1 mo follow up*	Neoadjuvant	21	8%	EGFR
M9	Metastatic	154	25%	JAK2
M10	Metastatic	34	4%	N/D
M12*	Metastatic	11	15%	N/D
M13*	Metastatic	8	N/D	N/D
Positive control #1 (80 MDA-MB-231 spike in sample)	Positive Control	N/D	N/D	KRAS, BRAF, TP53
Positive control #2 (80 MDA-MB-231 spike in sample)	Positive Control	60	8%	KRAS, BRAF, TP53

Mean CTC Purity	13%
% Samples > 5% Purity	86%
% of Samples with Somatic Mutation Detected	50%

CTC levels (right): 60% of neoadjuvant (early stage) patients and 73% of metastatic patients had >10 CTCs. This level went down to 34% following one cycle of chemo.

NGS on clinical samples: Bladder

cancer samples (N=4 neoadjuvant, N=4 metastatic) were enriched for CTCs, lysed, amplified, and sent through the NGS analysis workflow (lonTorrent). Somatic variants were detected in 4/8 (50%) of samples. Mean CTC purity was 13%, and 86% of samples had >5% CTC purity (target threshold for NGS analysis).

ACKNOWLEDGMENTS

- UCSF Genome Core
- Thermo Fisher Scientific
- Moffitt Cancer Center

CONCLUSIONS

- The IsoFlux System provides a platform for performing NGS analysis on blood biopsy samples in oncology
- Multiple capture antibodies enhances CTC recovery, and IsoFlux NGS Kit enhances CTC purity
- NGS workflow has been developed and validated to produce high-confidence somatic variants, with good

All patients who contributed samples to these studies

alignment between multiple sites, NGS platforms, and cancer-specific NGS panels

IsoFlux currently being used in numerous translational studies to monitor patients and profile tumor cells using NGS analysis